Grande-Prairie to Alaska Microwave System 1961

Ralph Cameron

Ottawa On 2017

R. D. CAMERON

TORONTO, ONT.

EMPIRE 8-6071 EXT. 287

CN Telecommunications Engineering Dept. 1960

Chief Eng̣ineer

Asst. Chief Eng̣ineer

Radio --------------Equipment ----- Outside Plant----------Power		
VHF/UHF	Audio	Cable installation
CNR mobiles	Channelizing	Voice/TV-studio
Generators/		
Microwave		Site surveys-roads
Standby		
LP Broadcast		Pole line Mtce

Grande Prairie-Alaska Microwave System

Construction commenced in 1960
Completed in 1961
Turnkey fixed price of $\$ 25$ million
Canadian portion connected Colorado Springs to Clear Alaska
CN Telecommunications was prime contractor RCA Victor Montreal supplied MM-600 6Ghz microwave Dominion Bridge fabricated towers Butler Buildings used System comprised 42 microwave sites Grande Prairie AB- Yukon/Alaska border is $1310 \mathrm{mi} / 2096 \mathrm{Kms}$

Highest site in Highway- 8 Mile Creek elevation 5552 ft . Total length of tower sections- 9160 ft .

Purpose of the system

-Provide a back up communication system from Colorado Springs to Clear Alaska in event of Pacific cable being lost. System was contracted to CNTelecommunications by the U.S. SignalCorps for $\$ 25$ million.

It was a turn-key system and part of the BMEWS (Ballistic Missle Early Warning System)

Grande-Prairie-Alaska Microwave Route Map

Distances on the Alaska Highway

Grand Prairie Ab-Dawson Creek B.C. 131kms
Dawson Creek B.C.-Ft. Nelson B.C. 455kms
Ft.Nelson B.C. -Watson Lake Y.T. 513 kms
Watson Lake Y.T.-Whitehorse Y.T. 438kms
Whitehorse Y.T.-Haines Jct Y.T. 154 kms
Haines Jct Y.T.- Beaver Creek Y.T. 291kms
Beaver Creek Y.T.- Tok Jct Ak 176kms
Total 2156 kms

STATION	$\begin{aligned} & \text { LATITUDE } \\ & \text { LONGITUDE } \\ & \circ \text {. " } \end{aligned}$	ADJACENT STATION	$\left\lvert\, \begin{aligned} & \text { PATH } \\ & \text { LMNGIH } \\ & (\text { miles }) \end{aligned}\right.$	$\begin{array}{r} \text { THUE } \\ \text { BEARING } \\ \mathrm{N} \circ \quad \mathrm{O} \\ \hline \end{array}$	Tormir BASE ELEV. (2, 1)		MamTJTITE RADIO SYSTEM			AUKILIARY RADIO SYSTE?		
							WhATETTIER FRis. $8:$ POL.	$\begin{array}{c\|} \hline \text { ANT, } \\ \text { IEVEI } \end{array}$	$\begin{gathered} \text { ANTP. } \\ \text { TYPE } \\ \hline \end{gathered}$	TRAIS:ITTER FREA. 2: POL	$\begin{gathered} \text { ANT. } \\ \text { LEVEL } \end{gathered}$	$\begin{aligned} & \text { AJTT. } \\ & \text { TYYPE } \end{aligned}$
Steamboat	$\begin{array}{r} 584115 \\ 1234555 \end{array}$	Fort Nelson Summit Pass	$\begin{aligned} & 38.2 \\ & 34.6 \end{aligned}$	$\begin{array}{r} 77.5 \\ 264.0 \end{array}$	3615	230	$\begin{aligned} & \text { MM }(5 s, 13 s) \text { H } \\ & M M(4 s, 12 s) V \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$			
Summit Pass	$\begin{array}{r} 583753 \\ 1244311 \end{array}$	Steamboat Eight Mile Creek	$\begin{aligned} & 34.6 \\ & 37.9 \end{aligned}$	$\begin{array}{r} 84.0 \\ 313.0 \end{array}$	5473	340	$\begin{array}{ll} \text { MM }(5,13) & V \\ \text { MM }(4,12) & V \end{array}$	$\begin{aligned} & 240 \\ & 110 \end{aligned}$	40 40			

Tagish	$\begin{array}{r} 601628 \\ 1341102 \end{array}$	Seaforth Creek Canyon Mountain	$\begin{aligned} & 20.9 \\ & 36.0 \end{aligned}$	$\begin{array}{r} 59.5 \\ 318.0 \end{array}$	3973	145	$\begin{array}{ll} \text { MM }(4,12) & \text { H } \\ \text { MM }(5,13) & \text { H } \end{array}$	$\begin{array}{r} 60 \\ 130 \end{array}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		
Teslin	601236 1324841	Hazel Squanga Creek	$\begin{aligned} & 37.5 \\ & 29.4 \end{aligned}$	$\begin{aligned} & 122.0 \\ & 313.5 \end{aligned}$	3549	100	MM ($4 \mathrm{~s}, 12 \mathrm{~s}$) H $M M(5 s, 1.3 \mathrm{~s}) \mathrm{V}$	90 90	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		
Townsend Creek	$\begin{array}{r} 565918 \\ 1221003 \end{array}$	Blueberry Atick Creek	$\begin{aligned} & 24.0 \\ & 22.6 \end{aligned}$	$\begin{aligned} & 140.5 \\ & 302.5 \end{aligned}$	3410	295	$\begin{aligned} & M M(3 s, 11 s) \text { H } \\ & M M(4 s, 12 s) \text { H } \end{aligned}$	$\begin{aligned} & 290 \\ & 290 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		
Valhalla	552758 1191821	Grande Prairie Keeping	$\begin{aligned} & 29.0 \\ & 27.5 \end{aligned}$	$\begin{aligned} & 133.5 \\ & 268.5 \end{aligned}$	2745	235	$\begin{aligned} & M M(5 s, 13 s) V \\ & M M(4 s, 12 s) V \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		
Watson Lake	$\begin{array}{rrrr}60 & 03 & 24 \\ 128 & 34 & 31\end{array}$	Hyland River McKinnon	$\begin{aligned} & 18.0 \\ & 27.3 \end{aligned}$	$\begin{aligned} & 106.0 \\ & 274.0 \end{aligned}$	3021	210	$\begin{array}{ll} \text { MM }(4,12) & V \\ \text { MM }(5,13) & V \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	40 40		

Grande Prairie-Alaska Microwave Svstem-1961

Site Name	Elevation(Ft)	Tower Height(Ft)	Path Length(Ft)
101 Grande Prairie	2200	225	29.0
102 Valhalla	2745	235	27.5
103 Keeping	2990	245	25.2
104 Dawson Creek	2540	360	22.2
105 Pine Valley	2647	325	33.8
106 Coffee Creek	2901	275	31.1
101 Blueberry	3140	285	24.0
102 Townsend Creek	3410	295	22.6
103 Atick Creek	4129	165	28.0
104 Minaker River	4057	215	35.7
105 Bougie Creek	2147	225	26.7
106 Big Beaver Creek	1582	345	26.0

113 Fort Nelson	1488	315		38.2
114 Steamboat Mtn	3615	230	34.6	
115 Summit Pass	5473	340	37.9	
116 Eight Mile Creek	5552	355		39.5
117 Mould Creek	3407	250	23.5	
118 Geddes Creek	2950	100	24.8	
		370	28.9	
119 Oregon Lake	2710	225		
120 Hyland River	2870	300	27.3	
121 Watson Lake	3012	350	23.5	
122 MCKinnon	2830	350	19.7	
123 Rancheria River	2870	345	7.7	
124 Freer Creek	3320	300		

125 Shilsky Lake	4520	225	24.3	
126 McNaughton	4108	200	21.5	
127 Hazel	3320	275	37.5	
128 Teslin	3549	100		29.4
129 Squanga Creek 2557	265		9.2	
130 Seaforth Creek	3213	155	20.9	
131 Tagish	3973	145	36.0	

Grande-Prairie - Alaska Microwave System-1961

Site	Name	Elevation (Ft)	Tower Height (Ft)	Path Length (Mi)
132	Canyon Mtn	4243	145	8.3
133	Whitehorse	2370	50	13.8
134	Laberge	3495	265	31.0
135	Mendenahall	2734	275	12.9
136	Champagne	2435	240	35.0
137	Paint Mtn	4525	30	28.0
138	Boutellier	3370	100	32.0
139	Burwash	2834	270	35.0
140	Don Jek River	2813	345	41.8
141	Horse Camp Hill	4575	205	38.9
142	Mt.Dave**	3005	100	40.2

Site Selection Criteria

Topographic Maps- 1:50,000, contours south of Ft.Nelson-50ft, remainder of system-100ft.

Practicability Survey- If good radio path, proximity to power, practical tower heights. Performed by CNT Engineers, RCA Victor and Racey MaCallum \& Assoc.

Photogrammetry- Obstruction investigation done by Shaw Photogrammetric Services of Hull,P.Q. Refined original work done by the Army SurveyEst. Tree heights as well defined heights of peaks /obstructions to $+/=5$ or 10 ft.

Site Selection Criteria-cont'd

Survey- Data obtained for civil work as well as site elevations and coordinates, accurate to $\mathbf{5 f t}$.

Final Profile- Once determined from above data- tower heights may be calculated, based on $4 / 3$ earth's radius.(example)

Antenna Heights- generally chosen based on clearance over all obstructions will be at least 0.6 First Fresnel zone clearance at $K=0.8$. This may be modified if reflections are expected. Reflections are either minimized by causing the reflecting point to appear at one end or by utilizing obstructions to block the reflected ray.

Suspected reflections are investigated using K=infinity.

Fresnel Zone Clearance

$r_{(\text {in mts })}=17.32 \times \sqrt{\frac{d}{4 f}}{ }_{(\text {(in } \mathrm{KHz})}$
$r_{(\text {in ft })}=72.05 \times \sqrt{\frac{d}{4 f}}$ (in miles)

TYPE MM-600-6 PARABOLOID WITH CENTRE FEED.
BASED ON EXPERIMENTAL \& THEORETICAL CONSIDERATIONS APPLIER TO THE MM-600-2 PARABDLOID WITH CENTRE FEED.

NOTE 1: THIS GRAPH SHOWS THE ENVELOPES OF THE PEAKS

Also used
Quadruplexors (4 cavity tunable Filters) to provide Selectivity. One
Filter per transmit Path and one per Receive path.

Peace River Bridge -55.4Km-2100ft long

Muncho Lake B.C.

F

\qquad

Observations

Followed highway-leap frogged Failures < 0.0001\%/year 6Ghz - first in Canada Interconnecting dissimilar systems No snow tires
No break generators, 1 Hz at 60 Hz
Airfare Toronto-Whitehorse-\$260
3/4 ton Fargo+ camper
Grande Prairie building
Antenna aiming
B.C.band monitoring

Otter Falls- 20 miles off Hwy
Tagish Mtn wolf
Mile 351.2-opical illusion?
Flat tires-cause-Rancheria-Bailey
bridge
RCA vehicle vs VIP vehicle-Summit
Pass
Accident
Another flat tire-mile 1188.5-Snag
Armchair Supt.CNR-
Site 135 or 138 Diesel fuel

6Ghz feeders -waveguide presurized Dry nitrogen to eliminate moisture

Ice covers protect W/G from falling ice No break generators where no local power

Order wire for inter site communications
Supervisory control system- doors,temp.
Two aerial tramways by Norwegian company Buildings on permafrost had temp sensors.
RCA Victor Montreal: Greg Bayliss, Engineering Mgr
Dan Mercek -Engr
John Elvidge-Engr
Ron Saunders- Antenna erection, technician
Marc Lopionowski-Engr
Dean Colis-Engr
Bill Davidson-Engr
Bob Williamson-Engr
Ken Gordon-Engr
Bill Fosty-Engr
Bob Smith-Engr
Mo Allan- Tech
Bob Vincent-Tech
Ken Jensen-Engr.
Pat Cicciu-Tech
Marcel Labelle-Tech
Roland Grenier-Engr
Andre Roscynski-Engr
Leo Arsenault-Engr
Jack Garrison-Tech
CNTelecommunications C.J.Bridgland, General Radio Engineer
J.S. Ford, Asst Chief Engineer
Anthony Pichota, Asst. Radio Engr.
John Rice, Engr, Radio
Alan Hodgins, Technologist, Radio
Ed Marek, technologist, Radio
Alan Bentley, Engr., Radio
Frank Takasaki,Engr Outside Plant

