Amateur Microwave Communications

Ray Perrin VE3FN, VY0AAA April 2010

Introduction

- Microwaves are the frequencies above 1000 MHz
 - More than 99% of the radio amateur frequency allocation is in the microwave bands....
- Amateur frequencies
 - 23 cm, 13 cm, 9 cm, 6 cm, 3 cm (= 10 GHz), 1.2 cm (= 24 GHz)
 - 47 & 76 GHz,...
- Presentation: Primarily aimed at 10 and 24 GHz

Wideband FM

- 1950s -1960s
 - Transmitter
 - modulated Klystron oscillator
 - Seldom any power amplifier
 - travelling wave tubes costly, complex power supplies
 - Tens or hundreds of milliwatts output
 - Receiver
 - Same Klystron used as local oscillator
 - No RF amplifier
 - Direct injection to mixer diode (10 dB NF)
 - IF typically 30 MHz
 - Waveguide feed

Wideband FM

- 1950s / 1960s
 - Line of sight paths only
 - Theoretical range few hundred km
 - In practice, max 50 100 km over land
 - DX possible by ducting, especially over water and along coast
 - Source of equipment
 - Homebrew
 - Later -- surplus commercial equipment

Commercial

- Tellurometer
 - Available surplus 20+ years ago
 - Surveying instrument with communications capability
 - same technology as homebrew
 - 10 GHz plus other bands available
 - 100 km path worked by VE3ASO (sk) from Foymount to Gatineau Park

Wideband FM

- 1970s
 - Gunn diode replaces klystron
 - Otherwise, similar technologies
 - No preamp or power amp
 - Max range still typically 50 100 km over land
 - Source of equipment:
 - Modified burglar alarm
 - Commercial from ARR
 - produced station complete with IF radio and horn antenna

Gunnplexer

Wideband FM Communications

Each station has IF of 100 MHz

Wideband FM Communications

Each station has IF of 100 MHz

- Why Narrowband (CW/SSB)??
 - For very weak signals, SSB has roughly 30 dB advantage over wideband FM
 - But:
 - More complex circuitry
 - must have very stable oscillators and accurate frequency indication.

- Transverter
 - Transmitting / Receiving converter
 - Transmit
 - VHF / UHF IF source (typically 144 or 432 MHz) mixed with LO to produce microwave signal
 - · usually power amplifier
 - Receive
 - microwave received signal mixed with LO to produce VHF / UHF output
 - usually RF amplifier

Simple Transverter: 10,368 MHz

Simple Transverter: 10,368 MHz

Simple Transverter + Image Filter: 10,368 MHz

- 1979: G3JVL waveguide 10 GHz transverter
 - Tuned circuits in waveguide
 - 378.666 MHz LO input to harmonic generator
 - 10,224 MHz harmonic of LO selected by waveguide filter and fed to diode mixer
 - Tx: Mixed with 144 MHz and filtered → 10,368 MHz
 - Rx: 10,368 MHz Rx filtered and mixed → 144 MHz
 - Tx output about 1 mW
 - Rx about 7 dB NF
 - Not limited to Line of sight
 - SSB has 30 dB advantage over wideband FM

G3JVL 10 GHz Waveguide Transverter January 1979

10 GHz & Up

- 1980s Technologies
 - 10 GHz Transistors available
 - Low-noise RF amplifiers
 - Power transistors
 - PC board construction and semi-rigid coax
 - Reduce need for waveguide
 - Equipment source: homebrew

10 GHz and Up

- Current Technologies
 - RF power amplifiers (Class A)
 - 10 GHz amp up to 50 W output available (25% efficient)
 - 24 GHz amp up to 10 Watts output (10% efficient)
 - Expensive!!
 - 10 GHz, \$100 per Watt
 - 24 GHz, \$1,000 per Watt
 - Low-noise RF amplifiers
 - 10 GHz: 0.8 dB NF available
 - 24 GHz: 1.6 dB NF available

Key Components

Waveguide to Coax Transition: 10 GHz

Key Components

Semi-rigid Coax with SMA Connectors

UT-141: 0.5 dB / Foot @ 10 GHz (approx.)

UT-085: 1.2 dB / Foot @ 24 GHz (approx.)

Key Components

SMA Microwave Switch (Relay)

Design Challenges

- Context
 - 10 GHz and 24 GHz bands are 72nd and 168th harmonics of 144 MHz respectively
 - Wavelengths
 - 10 GHz: 3 cm
 - 1/4 inch is roughly 1/4 wavelength!
 - 24 GHz: 1.2 cm
 - ½ inch is roughly 1 wavelength!

Design Challenges

- Local Oscillator frequency accuracy and drift
 - An LO 100 Hz off frequency or producing 100 Hz drift at 144 MHz would produce frequency error or drift of:
 - 7.2 kHz at 10 GHz; and
 - 16.8 kHz at 24 GHz
 - Current Crystal LOs
 - Clean LO (100 MHz region) plus multipliers
 - low phase noise (also multiplied)
 - Crystal heater typically used to reduce frequency error and drift.
 - Some lock (PLL) to external oscillator
 - Oven or GPS disciplined.

Microwave Transverter

Sources of Equipment

- Modify surplus commercial equipment (e.g. "White Box")
- Ham transverters, power amps, pre-amps available (DB6NT, DL2AM, DEMI)
- Homebrew

DB6NT 10 GHz Transverter

LO, Mixer, Tx/Rx control, Image filters, 10 GHz Rx and Tx amplifiers in one package

1.2 dB NF Rx, 200 milliwatts Tx

10 GHz

DB6NT Transverter

LO, Mixer, Filter, Rx & Tx amplifiers in one box

1.2 dB NF, 200 mW out

DB6NT Pre-amp

0.8 dB NF

DL2AM amplifier

12 Watts out

Sequencer

T/R Relay

2 foot dish

24 GHz

DB6NT Local Oscillator:

- •12024 MHz
- •PLL locked to 10 MHz Oven Osc.

DB6NT Mixer

- •Doubles LO freq to 24048 MHz
- •Mixes with 144 MHz → 24192 MHz
- •200 microwatts output
- •8 dB NF

Waveguide Image Filter

DB6NT Pre-amp 1.6 dB NF

Toshiba Power Amp: 1 Watt

18" Dish

Microwave Attenuators

- Free-space loss
 - Increases with frequency
- Local obstructions
 - Hills, buildings, etc.
 - Increases with frequency
 - Tree leaves
 - Some attenuation at UHF
 - Attenuation increases with frequency and is substantial at 10 GHz and above

Microwave Attenuators

- Tropospheric scatter and diffraction loss
 - Typically long-haul non optical (line of sight) paths
 - Loss increases with frequency

Atmospheric

- <10GHz absorption is neglectable
- >10GHz
 absorption
 becomes
 significant

- Troposphere
 - Ducting or temperature inversion
 - especially over water
 - Over Great Lakes and along ocean coast
 - More than 1000 km worked along east and west coast on 10 GHz
 - Small low ducts over water may propagate microwave frequencies, but not 144 MHz
 - Diffraction on non line-of-sight paths
 - Can be enhanced by ducting
 - Scatter (refraction) at greater distances

- Tropospehere
 - Tropospheric turbulence may "break up" or distort Morse or SSB signal
 - A dash could become 2 dots
 - Doppler shift can spread signal
 - Tropospheric enhancement usually best:
 - in summer and fall
 - early morning or evening / night
 - but usually bad for 24 GHz and up (water vapour)

- Good location is a big advantage
 - High altitude & "clear horizon"
 - Tree leaves and other blockages are significant attenuators
 - Tropo diffraction and scatter losses mount quickly
 - Low "take-off" angle
 - Over water can work well

- Rain scatter
 - Antennas become efficient when their dimensions are in the same range as the wavelength
 - Water is polarized
 - Raindrop dimensions are typical 2-3mm
 - At 10 GHz raindrops are (small) antennas which reflect the incoming signals
 - Weather radar
 - Doppler shift
 - Caused by random (wind) movement of the 'antennas'.

Local Sites

- Gatineau Park, Quebec (FN25bl, FN25bm)
 - Brule, Champlain outlooks
 - blocked to East and SE
 - King Mountain trail
 - Clear from East to West through South
 - Both 1150 feet ASL
- Mont Tremblant, Quebec (FN26rf)
 - 2850 feet ASL
- Foymount, Ontario (FN15ik)
 - 1750 feet ASL
- Numogate, Ontario (FN14xw)
 - Only 550 feet ASL, but clear horizon

10 GHz: Personal Achievements

- From Gatineau Park
 - 385 km to Mount Washington, NH (SSB)
 - 403 km to Hamilton, ON
 - 588 km to Block Island, RI
- From Mont Tremblant
 - 620 km to Martha's Vineyard (Mass. coast)
- From Foymount
 - 490 km to Mount Washington, NH (SSB)
- From Numogate
 - 383 km to Mount Washington, NH (SSB, Rain Scatter)

24 GHz: Personal Achievements

- From Mont Tremblant
 - 234 km to Mount Mansfield, Vt. (SSB)

QSO Techniques

- Antenna beam width very narrow
 - Roughly 3 degrees or less
 - Azimuth and Elevation!
 - Calling CQ futile except for very local
- Usually first contact on 144 MHz SSB
 - Identify exact location (6 digit Maidenhead grid square – e.g. FN25bl)
 - Confirm antenna bearings

QSO Techniques

- One station sends continuous dashes
- Other station tunes (freq errors)
- When found, peaks antenna and reports success on 144 MHz liaison
- Second station may then send dashes or start QSO by sending callsigns plus grid.

Any Questions ???