A Beginner's View of

Easy Moonbouncing...

By Bertrand Zauhar, VE2ZAZ ve2zaz@amsat.org http://ve2zaz.net

My Objective

- GET YOU INTERESTED IN WORKING EARTH-MOON-EARTH QSOs.
 - Most hams believe exotic equipment, huge antennas, and very high power are needed to work EME.
 - You can enjoy the thrill of moonbounce with a modest setup.
 - Basically the equipment you may already have.

This Presentation

- Why Moonbounce?
- The History
- A real challenge
- The Bands
- How Small a Station
- Visit VE2ZAZ EME
- Some Hints
- Optimize Noise Figure
- JT65
- The Software
- Moon Tracking
- Web References

W5UN – Mighty Big Antenna. 32 x 17 el. Yagis on 2m

Why Moonbounce?

- IT IS EXCITING!
 - Most fun in ham radio is making rare, unusual, or difficult contacts. EME is the pinnacle of ham radio achievement.
- ALLOWS TO WORK WORLDWIDE DX ON ANY BAND 6M UP.
 - No other unassisted mode provides this capability.
- MOTIVATES YOU TO LEARN MORE ABOUT COMMS THEORY
 - Propagation, noise, antenna phasing, polarization, space object tracking, etc.
- PROVIDES AN INCENTIVE TO BUILD BETTER ANTENNAS.
 - Complete EME arrays are not available commercially.

A Bit of EME History

- 1946: First experiments by US Mil. in Project Diana. 3,000 watts at 111.5 MHz into dipole array
- Following years, Moon used for Teletype between mainland and Pearl Harbor
- 1953: First Amateur detection between W4AO and W3GK on 2m
- 1960: First EME QSO on 1296 MHz by W1BU club in MA.
- 1965: Arecibo Observatory Mounbounce contacts on 430 MHz with tens of kW!

The Anatomy of an EME QSO

- AVERAGE MOON DISTANCE: 384,000km
 - Average Round Trip: 770,000km!
 - Propagation Path Loss: 250+ dB!
 - Echo delay: ~ 2.4 Seconds
- 93% OF WAVE ABSORPTION BY MOON
 - Only 7% wave reflection
- ANGLES AND BEAMWIDTH
 - Moon is ~ 1 degree wide when seen from earth
 - Antenna is 0.00....1 degree wide when seen from the moon!

Impairments in an EME QSO

POLARIZATON OFFSET

- 90-degree polarization offset between stations, forget it!
 - FARADAY ROTATION: Polarization rotation due to Ionosphere and earth's magnetic field. At 432MHz, up to 1.5 complete rotation, at 1296MHz 0.25 rotation. Negligible at higher F.
 - SPATIAL OFFSET: Geometry of the path between two stations.

LIBRATION FADING

- Signal fading caused by the movement of the moon and surface imperfections.
- The higher the frequency, the faster the fading

COSMIC NOISE, SUN NOISE

- When Moon has noisy sky in background, forget it!
- When Sun and Moon line up, forget it!
- QRM, QRN...

What Band to use?

- 50MHz: Not very popular: Big antennas, lots of QRN, no preamp required, KW+ a must. Difficult.
- 144MHz: Most popular band, tons of stations work random JT-65 QSOs. A pair of long boom yagis and 500-1000W will keep you active.
- 432MHz: Fewer stations, more difficult to work random. Activity Periods. A pair of long boom Yagis or 4 yagis a good entry point. 400W+ an asset. Preamp is a must. QRN nil!
- 1296MHz: More and more stations, probably more than on 432MHz. A 10+ foot dish is the way to go. 100W+ a must.
- 2304MHz: Fewer stations, must plan skeds. More exotic gear to generate the high output RF power. Skeds only.
- >2304MHz: Experiments, lots of experiments. TWTs, fancy stuff, waveguides. Some activity. Skeds only.

Big Guns are an Asset!

- THEY DO ALMOST ALL OF THE WORK!
- THERE ARE A LOT OF THEM, ESPECIALLY IN EUROPE.

HB9Q Club - 15m Dish (70cm, 23cm, 13cm), 8 x 19 el. Yagis (2m), 11 el. Yagi (6M)

How Small Can an EME Station Be?

- Single long-boom Yagi
- 80W
- No Preamp
- No Elevation Rotor

Success in JT-65!

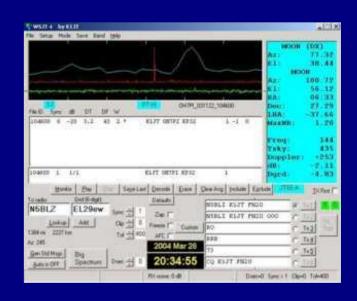
- 4 x long-boom Yagis
- 45W
- Low NF Preamp

Success in CW!

SIMPLE BASIC QSOs, NOT RAG CHEWING!

VA3TO – 2M EME, 112 Countries

EME at VE2ZAZ... Outside



EME at VE2ZAZ... Inside

- Rig: TS-790A (separated Tx and Rx ports)
- Amp: Mirage D1010 brick (~100 W).
 - Future: AM-6155 FAA amp (~400W)
- Sequencer: "At Last" Sequencer (VE2ZAZ)
- Audio Filter: JPS NIR-10 DSP
- PC and Sound Card:
 - WSJT Software
 - Spectran Sound analysis/filter Software
 - Nova For Windows tracking Software
 - NOUK JT-65 EME Logger Website
 - MultiKeyer CW Keyer Software

Some Hints for a Small EME Station

- Minimize Losses Between Antenna and Preamp.
 - Any attenuation is a direct deterioration of the Noise Figure.
 - Best possible coax. RG-214 not good enough. LMR series better.
 - Use N-Type connections everywhere, even at 144MHz.
- Rule out old Yagi designs
 - Constant element spacing not a good indication of modern design.
 - Modern modeled antenna designs are best. K1FO long boom design is a baseline.
- Every Watt Counts. Use the best possible TX feedline.
 - At >432MHz, Heliax or equiv. Is a MUST!

More Hints for a Small EME Station

- At 432MHz and Above, use a preamp with very low NF.
 - NF < 0.5B recommended.
- Transverters Work Great
 - Are Cheaper.
 - Can be located remotely to minimize feedline losses.
- Operate When Moon Conditions are Best
 - The 2dB difference in path loss can "make or break" a QSO.
 - Avoid high sky noise.
- Exploit Ground Gain, up to 6 dB due to ground reflections.
 - Especially applicable to 50MHz and 144 MHz

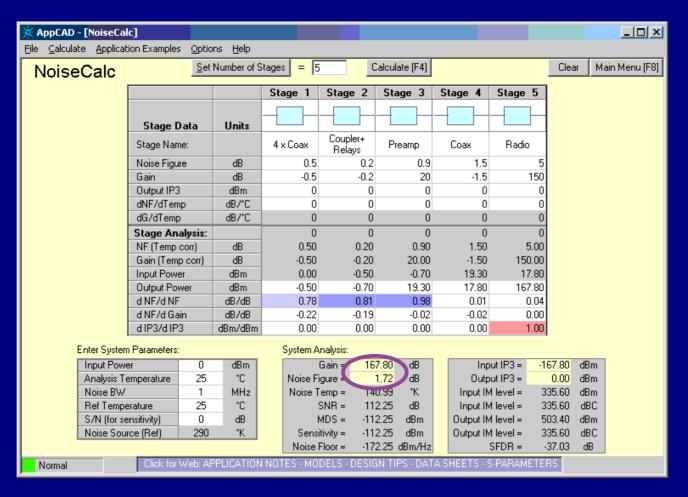
More EME Hints...

- Be careful about Amplifier Over-Stress from JT65.
 - JT65 runs 50 secs at full power, 70 secs off.
 - Use a fan on linear bricks. 24V fan on 13.8V is quiet and effective.
 - Derate output power (from p.e.p. specs) on tube-type amplifiers.

Avoid Hot-Switching Coaxial Relays

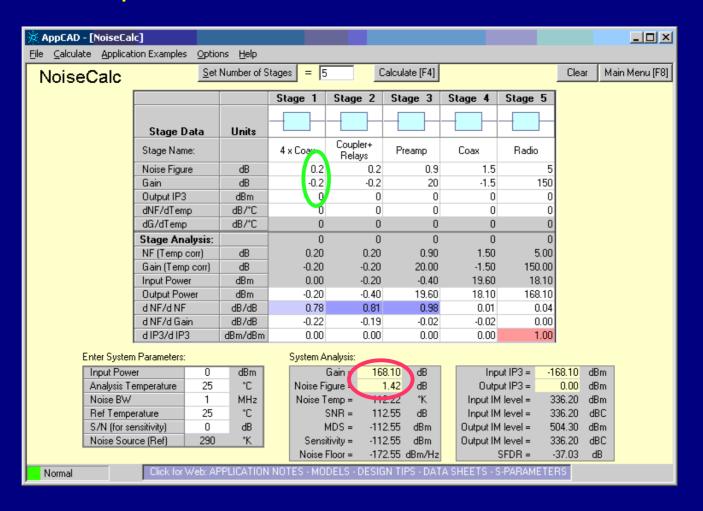
Wears out contacts at much accelerated rate.

Be on Frequency

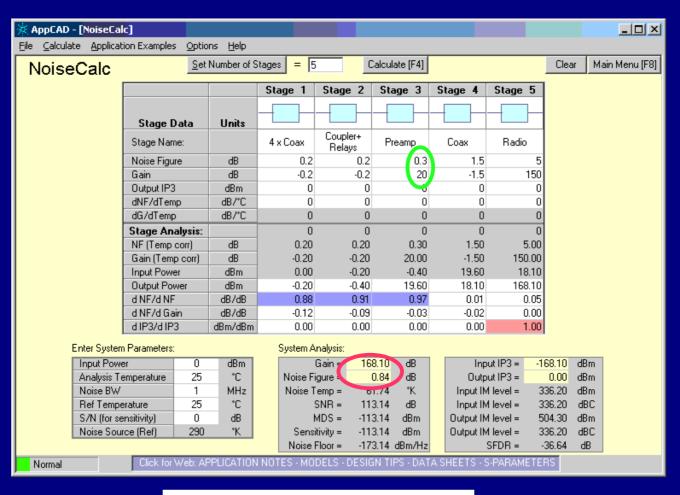

- Measure your TX frequency offset and compensate for it.
- Use a Frequency Counter with a GPS Reference.
 - Especially applicable to 1296MHz and above.
- Remember RX Doppler compensation...
 - The higher the F, the larger the Doppler (proportional)
 - At 432MHz Doppler varies +/- 1KHz.

Even More EME Hints...

- Synchronize your PC to UTC Time
 - To the nearest second.
 - Win2K, WinXP, Vista have this built in.
- Polarization Control is an Asset
 - Feedpoint rotation on dishes.
 - Cross-Yagi array
- Watch for Coaxial Cable Power Handling Capability.
 - At 432MHz, surprisingly low.
 - RG-214 = $\sim 300W$
 - 9913 = ~400W
 - Another reason to use Heliax coaxial cable.


Optimize your Noise Figure

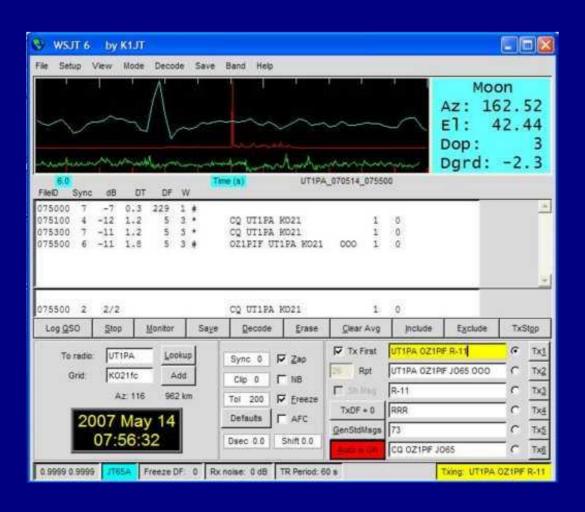
A "typical" Setup


Optimize your Noise Figure

A better setup

Optimize your Noise Figure

A Much Better Setup

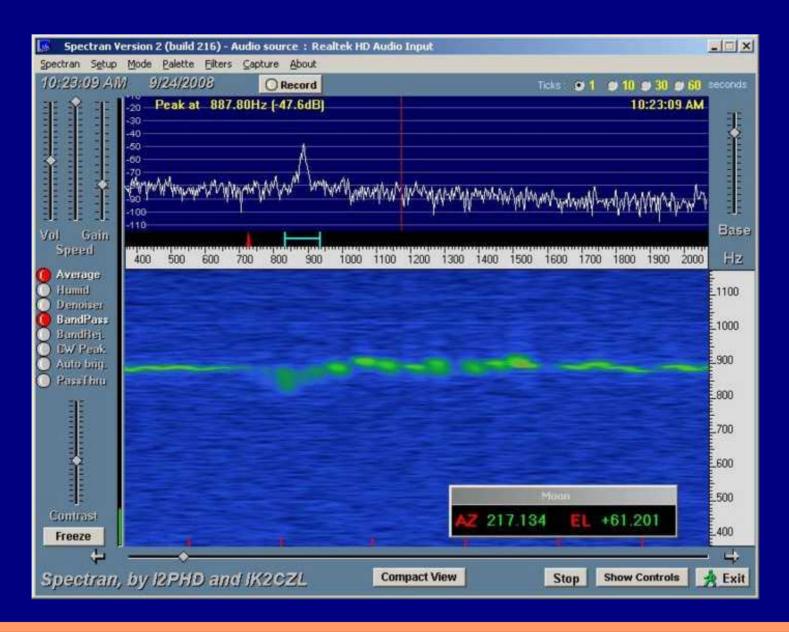


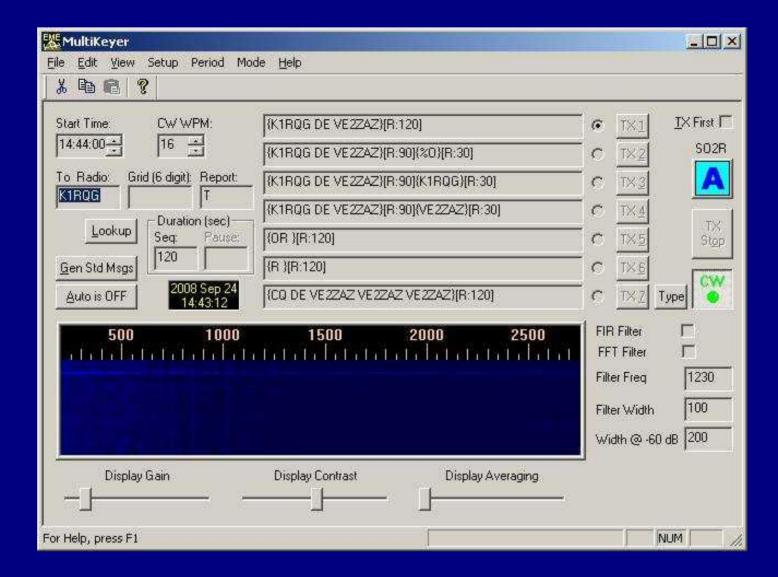
$$F_{\text{sys}} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots \ \frac{F_n - 1}{G_1 G_2 \dots G_{n-1}}$$

JT65 - The Small Station's Best Friend

- Modulation mode created by Joe Taylor K1JT in 2003
- Software actually called WSJT.
- Uses a PC and its sound card, Windows-based.
- DSP techniques optimized for extremely weak but slowlyvarying signals (e.g. meteor scatter and moonbounce)
- Uses 63-frequency shift keying with constant phase
 - Single tone and continuous phase: Usable on a non-linear transmitter and power amplifier!
- Decode signals many decibels below the noise floor, even without signals being audible to the human ear.
 - Forward Error Correction (FEC) used. 5.25:1 Redundancy Ratio
 - Fixed and Expected Message, Grid and Callsign Formats
 - CQ VE2ZAZ FN25
 - K2UYH VE2ZAZ FN25
 - O, RO, RRR, 73
 - Does averaging of several Rx messages
 - Uses Deep Search table (list of stations known to do EME)

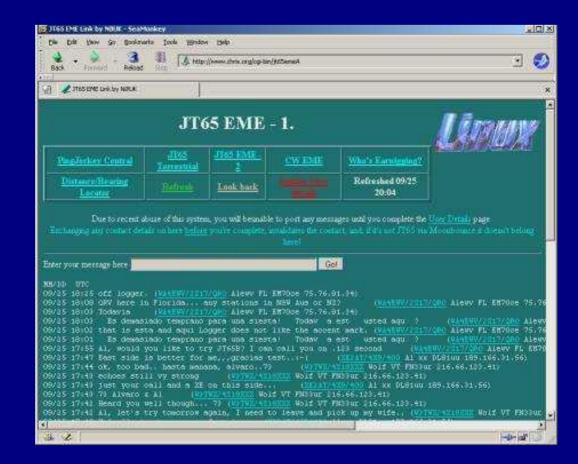
WSJT - JT65




The JT65 Controversy...

- "Deep Search" Lookup Controversy
 - Is it considered a complete copy of info for valid QSO?
- Not a true EME QSO? Too easy!
 - Endless Debate...
 - Solution will be to produce specific award classes for the EME digital modes

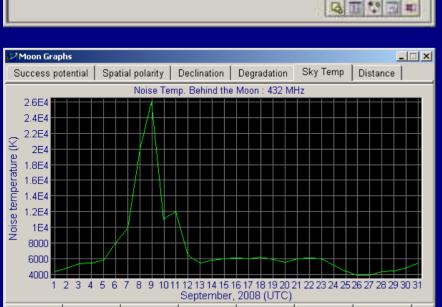
Spectran – Audio SA and Filter SW



MultiKeyer – Auto CW Keyer SW

NOUK JT-65 EME Logger

- A Must for both Skeds and Random QSOs
- Mostly 144MHz activity, but all bands are seen
- Other Logger Sites available
 - HB9Q EME Logger
 - ON4KST EME Chat

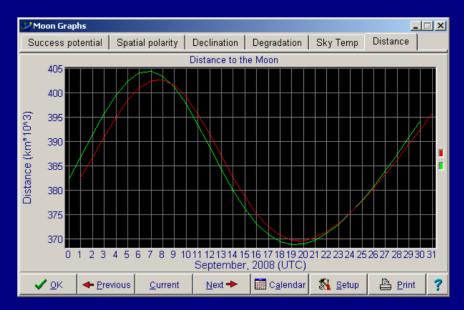


Moon Prediction

- Software (Current Position, Prediction, Sked planning, Mutual Visibility)
 - MoonSked \$
 - Nova \$
 - EME Systems
 - SatTrack (Linux)
 - Winorbit
 - ...
- Internet Applets (Current Position)
 - Sun, Earth and Moon Applet
 - http://www.jgiesen.de/SME/
 - Sun & Moon Position Calculator
 - http://www.satellite-calculations.com/Satellite/suncalc.htm
 - ...

Moon Prediction - Nova

Next →


Previous

Current

E Calendar

🍇 <u>S</u>etup

Print

Listing Data	a for Sun								x	
One Observer			,	One Observer AOS/LOS			Two Observers Az/EI			
Two Observers, One Satellite Mutual			Multiple C	Multiple Observers, One Satellite			Two Observers, Multiple Satellites Mut			
	M	lutual windo	ow	Otta		va, ON Washingto		gton, DC	_	
Date (Z)	Start (Z)	End (Z)	Duration	Between	Az/El@Start	Az/El @ End	Az/El@Start	Az/El @ End		
Sun position on Tuesday, September 23, 2008 (UTC)										
9/23/08	11:01:17	22:52:41	11:51:23		091°/001°	269°/000°	090°/000°	268°/001°		
Sun position on Wednesday, September 24, 2008 (UTC)										
9/24/08	11:02:12	22:50:45	11:48:33	12:09:31	092°/001°	269°/000°	091°/000°	268°/001°		
Sun position on Thursday, September 25, 2008 (UTC)										
9/25/08	11:03:07	22:48:50	11:45:43	12:12:21	092°/001°	268°/000°	091°/000°	267°/001°		
Sun position on Friday, September 26, 2008 (UTC)										
9/26/08	11:04:02	22:46:55	11:42:53	12:15:11	093°/001°	268°/000°	092°/000°	267°/001°		
Sun position on Saturday, September 27, 2008 (UTC)										
9/27/08	11:04:57	22:45:00	11:40:02	12:18:02	093°/001°	267°/000°	092°/000°	266°/001°		
Sun position on Sunday, September 28, 2008 (UTC)										
9/28/08	11:05:52	22:43:05	11:37:12	12:20:52	094°/001°	267°/000°	093°/000°	266°/001°		
Sun position on Monday, September 29, 2008 (UTC)										
<u> </u>	<u>R</u> e(Calc 👊	<u>S</u> top	¥ ⊻isible?	- Setu	ıp 🤏	Ø Û ₽	AA E	?	

QSLs are a Must for EME

- Get your QSL design refreshed!
- Paper QSLs are still very popular within EME community.
- Nice trophies for a Small Station!
- QSL is normally sent Direct, not Via Buro.

Some References

- Moon-Net Email Reflector
 - http://list-serv.davidv.net/mailman/listinfo/moon-net_list-serv.davidv.net
- 144MHz EME Newsletter
 - http://www.df2zc.de/newsletter/index.html
- 432 and Above EME Newsletters by K2UYH.
 - http://www.nitehawk.com/rasmit/em70cm.html
- DUBUS EME Moon Calendar
 - http://www.marsport.org.uk/dubus/eme.htm
- JT-65 Protocol Description
 - http://www.physics.princeton.edu/pulsar/K1JT/JT65.pdf

The WWW IS FULL OF EME STUFF!