# Using Rechargeable Batteries for Ham Radio Applications

by Dick Bonnycastle VE3FUA

## Title-notes

- -Got ham licence 1964
- -Worked on radar, satellites, etc.

# Rechargeable versus Non-rechargeable

## Pro:

- -Cheaper
- -Less Waste

## Con:

-Need Charger

## Notes-Rechargeable versus non-rechargeable

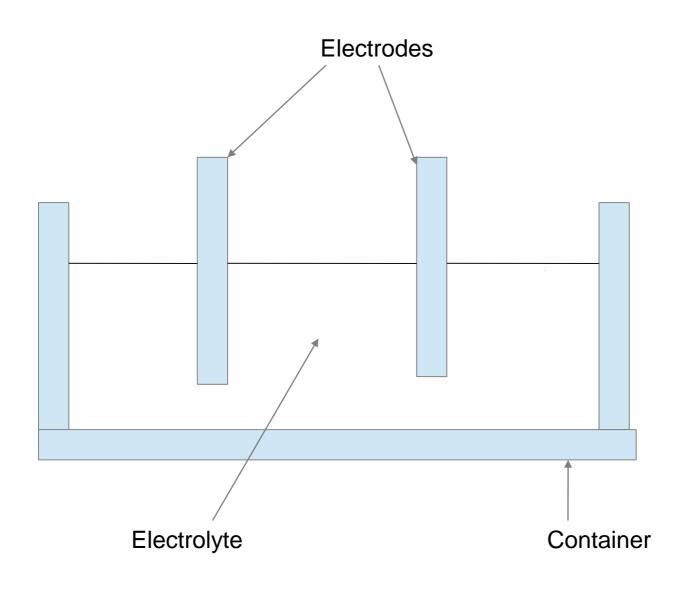
- -Rechargeable can be recharged and reused many times, non-rechargeable only once.
- -Some non-rechargeable can take a small recharge, but only poorly.

# Applications for Rechargeable Batteries

- -Portable equipment (radios, computers, cameras)
- -Remote from power lines
- -Emergency equipment
- -Car batteries
- -Hybrid Cars
- -Electric cars

## Notes- Applications for rechargeable batteries

- -Can also use non-rechargeables.
- -If substituting rechargeables for non-rechargeables, ensure voltage ranges are suitable.


# Capacity of a rechargeable battery or cell

- -defined as the product of the current multiplied by the time duration available from the fully charged state to the fully discharged state.
- -units: amp-hours (AH) or milliamp-hours (mAH)
- -When multiplied by the battery or cell voltage, equals the energy available from the unit.

Notes-Capacity of a rechargeable battery or cell

-A battery is a group of cells, usually connected in series or parallel.

# Simplified Cell



## Notes-Simplified cell

 -A simple lead-acid cell can be made using lead plates and dilute sulphuric acid in an insulating container. It will accept and release a charge.

## **Characteristics-1**

| Battery type                           | Cell volts<br>Nom. | Volts chg. | Volts dischg. | Self dischg.<br>%/mo. | Life cycles<br>100% dod |
|----------------------------------------|--------------------|------------|---------------|-----------------------|-------------------------|
| Sealed<br>lead-acid                    | 2.1                | 2.0-2.4    | 1.7-2.2       | 3-4                   | 200                     |
| Unsealed<br>Lead-acid                  | 2.1                | 2.0-2.4    | 1.7-2.2       | 3-4                   | 500-800                 |
| Nickel-<br>Cadmium                     | 1.2                | 1.3-1.55   | 1.0-1.4       | 20                    | 1500                    |
| Nickel-<br>Metal<br>Hydride            | 1.2                | 1.0-1.45   | 1.0-1.4       | 30                    | 500-1000                |
| Lithium-Ion,<br>Lithium-Ion<br>Polymer | 3.6                | 3.0-4.2    | 3.0-4.0       | 5-10                  | 400-1200                |
| Lithium-Iron<br>Phosphate              | 3.25               | 3.0-3.6    | 3.0-3.6       | <10                   | 2000+                   |

#### Notes-Characteristics-1

- -sealed versus unsealed batteries- all sealed except for second one
- -under unsealed lead acid, use "deep-cycle" type, not "starting" type.
- -voltages are at room temperature
- -dates brought into service:
  - -sealed lead-acid-1971
  - -unsealed lead-acid-1890s
  - -nickel-cadmium-1950
  - -nickel-metal hydride-1980s
  - -lithium-ion/lithium ion polymer-1991
  - -lithium-ion-phosphate-1996

## Characteristics-2

| Battery type                           | Shelf life-<br>years | Toxicity  | Temp.Rng.<br>C | Storage                | Charge<br>Technique |
|----------------------------------------|----------------------|-----------|----------------|------------------------|---------------------|
| Sealed<br>lead-acid                    | 20                   | Very high | -15 to 40      | Full chg               | Voltage/<br>current |
| Unsealed<br>Lead-acid                  | 20                   | Very high | -15 to 40      | Full chg               | Voltage/<br>current |
| Nickel-<br>Cadmium                     |                      | Very high | 0 to 45        | -30 to 50<br>Can short | Voltage/<br>current |
| Nickel-<br>Metal<br>Hydride            |                      | Low       | -10 to 45      | -20 to 35/<br>1 year   | Voltage<br>turnover |
| Lithium-lon,<br>Lithium-lon<br>Polymer | 2-6                  | Low       |                | Hold at 3.6 v.         | Voltage/<br>current |
| Lithium-Iron<br>Phosphate              | >10                  | Low       | -15 to 70      | Hold at 3.2 v.         | Voltage/<br>current |

#### Notes-Characteristics-2

-Some of the boxes in the table are empty. In these cases, there were no or inconsistent results.

## Characteristics-3

| Battery type                           | WH/kg   | WH/L    | W/kg     | WH/\$    | Safety                  |
|----------------------------------------|---------|---------|----------|----------|-------------------------|
| Sealed<br>lead-acid                    | 30-40   | 60-75   | 180      | 5-8      | safe                    |
| Unsealed<br>Lead-acid                  | 30-40   | 60-75   | 180      | 5-8      | Acid spill,<br>hydrogen |
| Nickel-<br>Cadmium                     | 40-60   | 50-150  | 150      | 1.25-2.5 | safe                    |
| Nickel-<br>Metal<br>Hydride            | 30-80   | 140-300 | 250-1000 | 2.75     | safe                    |
| Lithium-Ion,<br>Lithium-Ion<br>Polymer | 150-250 | 300     | 3000+    | 2.8-5.0  | Requires ext. protect.  |
| Lithium-Iron<br>Phosphate              | 80-120  | 170     | 1400     | 0.7-3.0  | safe                    |

#### Notes-Characteristics-3

- -WH/kg=watt-hours per kilogram
- -WH/L=watt-hours per litre
- -W/kg=watts per kilogram
- -WH/\$=watt-hours per dollar
- -Lithium-ion types are not considered safe without external protection, but can be procured that way.

## Reference book and internet site

Batteries in a Portable World-a handbook on rechargeable batteries for non-engineers

by:

Isador Buchmann

Cadex Electronics, Inc.

Internet: BatteryUniversity.com

#### Notes-Reference bok and internet site

- -Cadex Electronics, Inc. Is a Canadian company in Richmond, B.C.
- -The current book is the 3<sup>rd</sup> edition, published 2011.

# Safety Issues

-Fire hazard from high currents

-explosion

electrolyte leakage/chemical burns

### Notes-Safety Issues

- -For lithium-ion cells, the short-circuit current is equal to 25 times the amp-hour rating. Therefore, a small, 1.5 AH cell can produce a current of 37.5 amps, which could be dangerous.
- -A few years ago, the qualification of Boeing's 787 aircraft was delayed by about six months due to smoke and fire problems in the lithium-ion batteries in that aircraft. From the internet, it is not clear that the original problem has been either identified or corrected.
- -Lead-acid batteries can vent hydrogen gas if they are overcharged. This gas is explosive in sufficient concentrations.

# Carrying batteries on airplanes

- -Lithium-ion batteries may be carried in carry-on baggage only. There is a maximum amount of lithium specified
- -All batteries must be protected from shorting

## Notes-Carrying batteries on airplanes

-Batteries will be inspected for signs of abuse or damage. If found, the batteries will be seized.

# Disposal of old batteries

-City of Ottawa- "take it back" program, returning material to original seller or other party.

-Special waste collections

Notes-Disposal of old batteries

-In addition, see "specialized recyclers"

# **Battery suppliers**

- 1) Local battery specialists:
- -Total Battery
- -Alexander Battery
- 2) Electronic suppliers:
- -Active Electronics, The source, etc.
- 3) Electronic suppliers, general:
- -e.g. Digikey, etc.

## **Notes-Battery suppliers**

- -See also "digital camera sales"
- -See also "Model airplane sales (electric propulsion)

# Latest Battery Developments

-Aluminum-ion battery laboratory development at Stanford University, California

# Characteristics, so far:

- -2.0 volts per cell
- -7,000 charge/discharge cycles
- -materials should be cheap
- -high charge and discharge rates
- -possible use for power grid stabilization

## **Notes-Latest Battery Developments**

-This is only one of many battery developments going on at this time.

## The end

Any questions?